Question 11.

Let ABCD be a parallelogram. The lengths of the side AD and the diagonal AC are 10 cm and 20 cm, respectively. If the angle ∠ADC is equal to 30° then the area of the parallelogram, in sq. cm, is

A
25(3+15)2\frac{25(\sqrt{3}+\sqrt{15})}{2}
B
25(5+15)25(\sqrt{5}+\sqrt{15})
C
25(5+15)2\frac{25(\sqrt{5}+\sqrt{15})}{2}
D
25(3+15)25(\sqrt{3}+\sqrt{15})

Question Explanation

Text Explanation

Applying cosine rule in triangle ACD:

100+X22×10×Xcos30=400100 + X^2 - 2 \times 10 \times X \cos 30 = 400

X210X3300=0X^2 - 10X\sqrt{3} - 300 = 0

Solving, we get X=103+10152X = \frac{10\sqrt{3} + 10\sqrt{15}}{2}

Hence, area = 10Xsin30=(103+1015)102210X\sin 30 = \frac{\left(10\sqrt{3} + 10\sqrt{15}\right)10}{2 \cdot 2}

=25(3+15)= 25(\sqrt{3} + \sqrt{15})

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp