Question 10.

Anil invests some money at a fixed rate of interest, compounded annually. If the interests accrued during the second and third year are ₹ 806.25 and ₹ 866.72, respectively, the interest accrued, in INR, during the fourth year is nearest to

A
931.72
B
926.84
C
929.48
D
934.65

Question Explanation

Text Explanation

Let the principal amount be PP and the interest rate be rr.

Then

P(1+r)2P(1+r)=806.25(1)P(1+r)^2 - P(1+r) = 806.25 \quad (1)

P(1+r)3P(1+r)2=866.72(2)P(1+r)^3 - P(1+r)^2 = 866.72 \quad (2)

Dividing (2) by (1):

P(1+r)3P(1+r)2P(1+r)2P(1+r)=866.72806.25\dfrac{P(1+r)^3 - P(1+r)^2}{P(1+r)^2 - P(1+r)} = \dfrac{866.72}{806.25}

(1+r)21r1+r1=1.075\dfrac{(1+r)^2 - 1 - r}{1+r - 1} = 1.075

r2+rr=1.075\dfrac{r^2 + r}{r} = 1.075

r=0.075r = 0.075 or 7.57.5%


Interest accrued in 4th yearInterest accrued in 3rd year\frac{\text{Interest accrued in 4th year}}{\text{Interest accrued in 3rd year}} = X866.72\dfrac{X}{866.72}

P(1+r)4P(1+r)3P(1+r)3P(1+r)2=X866.72\dfrac{P(1+r)^4 - P(1+r)^3}{P(1+r)^3 - P(1+r)^2} = \dfrac{X}{866.72}

Dividing numerator and denominator by P(1+r)2P(1+r)^2:

r2+2r+11rr=X866.72\dfrac{r^2 + 2r + 1 - 1 - r}{r} = \dfrac{X}{866.72}

r+1=X866.72r + 1 = \dfrac{X}{866.72}

X=1.075×866.72=931.72X = 1.075 \times 866.72 = 931.72

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp