CAT 2022 Question Paper Slot 1 | CAT Quants
CAT previous year papers | Complete Paper Solution
1. Let a and b be natural numbers. If a² + ab + a = 14 and b² + ab + b = 28, then (2a + b) equals
A. 10
B. 7
C. 8
D. 9
2. For any real number x , let [x] be the largest integer less than or equal to x . If ∑_{n=1}^{N} \left [ \frac{1}{5} + \frac{n}{25}\right ]=25 then N is [TITA]
A. 6
B. 10
C. 15
D. 12
5. For natural numbers x , y , and z , if xy + yz = 19 and yz + xz = 51 , then the minimum possible value of xyz is [TITA]
A. the empty set
B. the set of all positive integers
C. the set of all integers
D. either the empty set or the set of all integers
A. 1 : 4
B. 1 : 5
C. 1 : 6
D. 1 : 7
A. 3
B. 1
C. 4
D. 5
A. 4
B. 7
C. 9
D. 8
A. 1176
B. 2520
C. 1680
D. 1440
A. 1 : 2
B. 4 : 1
C. 1 : 4
D. 3 : 1
14. The largest real value of a for which the equation | x + a | + | x − 1 | = 2 has an infinite number of solutions for x is
A. 0
B. 2
C. 1
D. -1
15. All the vertices of a rectangle lie on a circle of radius R. If the perimeter of the rectangle is P, then the area of the rectangle is
A. (P²⁄16)−R²
B. (P²⁄2)−2PR
C. (P²⁄8)−R²⁄2
D. (P²⁄8)−2R²
A. (−3, 4)
B. (0, 11)
C. (4, 5)
D. (−4, 5)
18. Let 0 ≤ a ≤ x ≤ 100 and f(x) = | x − a | + | x − 100 | + | x − a − 50 |. Then the maximum value of f(x) becomes 100 when a is equal to
A. 25
B. 0
C. 100
D. 50
A. 52
B. 53
C. 48
D. 47
A. 37.5%
B. 60%
C. 62.5%
D. 40%